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SUMMARY

Time-dependent incompressible Navier–Stokes equations are formulated in generalized non-inertial
co-ordinate system and numerically solved by using a modi�ed second-order Godunov-projection method
on a system of overlapped body-�tted structured grids. The projection method uses a second-order frac-
tional step scheme in which the momentum equation is solved to obtain the intermediate velocity �eld
which is then projected on to the space of divergence-free vector �elds. The second-order Godunov
method is applied for numerically approximating the non-linear convection terms in order to provide
a robust discretization for simulating �ows at high Reynolds number. In order to obtain the pressure
�eld, the pressure Poisson equation is solved. Overlapping grids are used to discretize the �ow domain
so that the moving-boundary problem can be solved economically. Numerical results are then presented
to demonstrate the performance of this projection method for a variety of unsteady two- and three-
dimensional �ow problems formulated in the non-inertial co-ordinate systems. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The primary motivation for this study stems from the need to develop suitable numerical
methods for solving the unsteady incompressible Navier–Stokes (INS) equations to model
the hydrodynamic environment and to estimate the hydrodynamic forces for the control and
navigation of underwater robotic vehicles (URVs) which are routinely being used for under-
water applications. A number of research studies done by Yuh [1], Kalske [2] and Fossen [3]
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1366 H. PAN AND M. DAMODARAN

have contributed towards the estimation of forces acting on underwater bodies. However, their
methods were based on the potential �ow theory which is a low-order �uid dynamics model.
In this work, an attempt is made to solve the incompressible laminar Navier–Stokes equations
to estimate the hydrodynamic forces acting on moving underwater bodies. In the case of
the underwater body moving away from other underwater structures, the environment in the
vicinity of the underwater body can be modelled as that of a rigid body moving in an in�nite
domain. In this situation a body-�xed co-ordinate system can be used with the computational
domain �xed on the moving rigid body. In this case then a variable boundary condition
problem is formulated instead of the moving boundary problem so that the complexities
associated with the moving boundary problem can be avoided with minimum computational
e�ort. In the case that the moving underwater body is in the vicinity of a �xed structure, then
the environment can be modelled as a moving boundary problem.
There are many methods for solving the INS equations with �xed boundary conditions.

However, only relatively few studies have dealt with the solution of INS equations with
moving boundaries, i.e. such as that of Ogawa and Ishiguro [4] who derived the INS equations
in general moving co-ordinates and solved the equations by �nite di�erence method and Ren
and Balchen [5] who solved the INS equations on the body-�xed co-ordinate system by
using �nite element method. In this study, the main ideas for the numerical solution of
the generalized INS equations in moving-body-�xed co-ordinate system using a second-order
projection method on overlapped structured grids is outlined.
It is reasonable to assume that the �uid around the body is incompressible. The main com-

putational di�culty for simulating the incompressible �ow by using the numerical method
arises from the fact that the continuity equation contains only velocity components and there
is no obvious link with the pressure as in the case of compressible �ow, where the den-
sity carries on the link. One method, which is the focus of the current investigation for
solving these equations is the second-order Godunov-projection method introduced by Bell
et al. [6, 7] and developed by Bell et al. [8] and Almgren et al. [9]. In this projection
method, a structured grid is used to discretize the �ow domain in the physical space, which
can be transformed to the computational space, which is a unit square in two-dimensional
space or a unit cubic in three-dimensional space through a mapping � given by

�=
@(x; y; z)
@(�; �; �)

where (x; y; z) stands for the co-ordinates of the physical space and (�; �; �) denotes the
co-ordinates of the computational space. The unsteady incompressible Navier–Stokes
equations in the generalized curvilinear co-ordinate system are de�ned as follows:

∇� · �U=0 (1)

Ut +
1
J
( �U · ∇�)U=

�
J
∇� ·

[
1
J
TT t∇� ·U

]
− 1

J
T t∇��+ F (2)

where J =det|�|; T = J�−1; �U=TU; � is the kinematic viscosity, U represents the velocity
�eld and � stands for the hydrodynamic pressure. The source term F appearing in the equation
is the consequence of the formulation of the equations in the non-inertial co-ordinate system

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1365–1380



COMPUTATION OF UNSTEADY VISCOUS INCOMPRESSIBLE FLOW 1367

and takes the form shown in References [10, 5] as follows:

F=−(]̇1 + ]̇2× r+ ]2× ]1 + ]2× (]2× r) + 2]2×U) (3)

where r is the position vector relative to the inertial co-ordinate system, ]1 = (u0; v0; w0)t and
]2 = (p; q; r)t are the linear velocity and the angular velocity of the origin of the non-inertial
co-ordinate frame, respectively, and ]̇1 and ]̇2 are the rates of change of the linear velocity
and angular velocity of the non-inertial co-ordinate frame. By comparing Equation (2) with
the conventional Navier–Stokes equation in the inertial co-ordinate system, it can be seen that
the di�erence lies in the presence of additional source term F, which contains the Coriolis
and centripetal acceleration terms. The Godunov-projection method must therefore be modi�ed
accordingly so that the source terms can be represented in the formulation.
This projection method consists of fractional time steps. First, the momentum equation (2)

is solved with a lagged pressure term to determine an intermediate velocity �eld, which does
not satisfy the continuity equation (1). Then this intermediate velocity �eld is decomposed
into two parts, i.e. a divergence-free and a curl-free part which de�ne the new velocity �eld
and an update for the pressure is done, respectively. The Godunov procedure is incorporated
in the di�erencing of the convective terms in order to provide a robust discretization so that
the restriction of cell Reynolds number can be removed.
In order to simplify the grid generation task for complex �ow domain that are common for

the underwater applications, a system of overlapping grids is used to discretize the compu-
tational domain. The overlapping grid consists of several component grids that overlap each
other and the union of the component grids covers the whole region over which the com-
putation is carried out. Each component grid can be generated separately and has its own
mapping function. The bene�ts of using an overlapping system of grids are many in that it
facilitates a smooth transformation for each component grid, simpli�es the task of grid gen-
eration in complex geometric domains and reduces the computational overhead for solving
moving boundary problems, which will be addressed in another paper. The methodology for
generating the overlapping grids for the computations reported in this work follows closely
the method outlined in Reference [11].
In this study the Godunov-projection method is implemented on overlapping grids to

simulate moving boundary problems by solving the unsteady incompressible Navier–Stokes
equations in the non-inertial co-ordinate system.
In the subsequent sections of this paper, the details of the Godunov-projection method

is presented as a three-step procedure covering aspects of temporal discretization, spatial
discretization and projection. This is then followed by a brief outline of the overlapping grid.
Selected numerical simulations of a number of two- and three-dimensional problems are then
presented and discussed.

2. GODUNOV-PROJECTION METHOD

The Godunov-projection method of Bell et al. [6] applies high order upwind schemes to
provide a robust di�erencing scheme for the convective terms in the INS equations solved
by fractional step methods as described in References [12, 13]. The Godunov procedure,
which was introduced for gas dynamics by Colella [14], is incorporated in this method.
The implementation of this algorithm is carried out in three steps. In the �rst step, the
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second-order Godunov method is used to approximate the conservative di�erences of the
non-linear convective terms 1=J ( �U · ∇�)U. In the second step, the intermediate velocity �eld
is obtained by solving the momentum equation (2) alone and by omitting the solenoidal
nature of the velocity �eld. Finally, an approximate projection is performed to restore the
divergence-free velocity �eld, which satis�es Equation (1) approximately, and subsequently
the hydrodynamic pressure is updated. These steps are outlined brie�y below.

2.1. Temporal discretization

Here the second-order fractional step formulation described in Reference [7] used in the present
work is brie�y outlined. A vector �eld V can be uniquely decomposed into a divergence-free
component and a gradient of a scalar �eld as follows:

V=Vd +∇ (4)

where Vd is a divergence-free vector �eld and  is a scalar. A projection operator P can then
be de�ned as P= I −∇(∇ · ∇)−1∇ so that PV=Vd and ∇ =(I − P)V.
By using the projection, the incompressible Navier–Stokes Equations (1) and (2) can be

written as follows:

Ut =P
(

�
J
∇� ·

[
1
J
TT t∇� ·U

]
− 1

J
( �U · ∇�)U+ F

)
(5)

By applying the Crank–Nicolson scheme for temporal discretization, Equation (5) takes the
following discretized form:

�t−1(Un+1 −Un) =P
(

�
2J

∇� ·
[
1
J
TT t∇� · (Un+1 +Un)

]

− 1
J
( �U · ∇�)Un+1=2 + Fn+1=2

)
(6)

In view of the non-local behaviour of the projection, the linear algebra problem associated
with solving this equation would be very costly. As an economic alternative, a fractional step
method can be applied where lagged pressure �eld is used for the computation. An interme-
diate velocity �eld U∗ is computed by solving the momentum equation along with lagged
pressure and then the projection is applied on the intermediate velocity �eld for obtaining
the divergence-free velocity �eld Un+1 and update of the pressure �eld. A number of forms
for projection exist and according to the analysis carried out by Rider [15] and Almgren
et al. [16], the pressure form of projection is the most robust as there is no accumulation
of the error associated with the no divergence assumption. In view of this the intermediate
velocity �eld is computed by solving the following equation and subsequently corrected by
the gradient of pressure:

�t−1(Û∗; n+1 −Un) =
1
2
J−1�∇� · [J−1TT t∇� · (Û∗; n+1 +Un)]

− J−1[( �U · ∇�)U]n+1=2 − J−1T t
(∇��

�

)n−1=2
+ Fn+1=2 (7)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1365–1380



COMPUTATION OF UNSTEADY VISCOUS INCOMPRESSIBLE FLOW 1369

Figure 1. Location of cell- and face-centred variables.

then

U∗; n+1 = Û∗; n+1 +�tJ−1T t(∇��)n−1=2 (8)

Next a projection is applied for decomposing the vector �eld into a divergence-free
component and a curl-free component so as to obtain a new velocity �eld Un+1 and to
update the pressure gradient J−1T t(∇��=�)n+1=2.

2.2. Spatial discretization

The spatial discretization of the momentum equation (2) is based on a cell-centred approxima-
tion since this arrangement provides the most natural setting for implementing the Godunov
method. The di�usion term can be discretized by using the standard second-order central dif-
ference in the computational space and the non-linear convective term is discretized by the
second-order Godunov method in order to provide a robust approximation.
Figure 1 shows a schematic of a three-dimensional grid with the co-ordinate indices de�ning

cell centres and cell faces. In order to compute the �ux on the faces of cell, the velocity on
the faces is extrapolated from the values computed at the cell centres. Since this method
is also second-order accurate in time direction, the �ow variables are extrapolated both in
space and time using Taylor series expansion. After combining the derivative in the normal
direction, the following equations are used to extrapolate the velocity U on the faces (i +
1=2; j; k)

Un+1=2; L
i+1=2 =U+

[
��
2

− �t
2J

�u
]
U� − �t

2J
(�vU� + �wU�)

+ �
[
�t
2J

∇�

(
1
J
TT t∇� ·U

)]
− �t
2J

T t∇��+ F (9)
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Un+1=2; R
i+1=2 =Ui+1 −

[
��
2
+
�t
2J

�ui+1

]
(U�)i+1 − �t

2J
(�vU� + �wU�)i+1

+ �
[
�t
2J

∇�

(
1
J
TT t∇� ·Ui+1

)]
− �t
2J

T t(∇��)i+1 + Fi+1 (10)

where U=Un
i; j; k and U

n+1=2
i+1=2 =U

n+1=2
i+1=2; j; k , etc. are implied by the subscript indices. A slope

limiter, such as superbee and minmod limiter, can be used to estimate the gradient of the
�ow variables in the cell in each co-ordinate direction. The variable has two values, one of
which is extrapolated from left cell and the other from the right cell. The extrapolation is
handled by using a Riemann solver, where an upwind averaging is applied. It is also possible
to employ an approximate Riemann solver presented in Reference [17]. It should be noted
that the pressure terms appearing in Equations (9) and (10) are not used in this extrapolation
in view of the weak instability which had been observed by Lai [18] if lagged pressure terms
and if the CFL number is greater than 0.5. Hence the marker-and-cell (MAC) projection
method outlined in Reference [19] is used so that the resulting velocity �eld on the staggered
grid is divergence-free. The convective terms are discretized as follows:

(
1
J
[( �U · ∇�)U]

)n+1=2

≈ ( �ui+1=2 + �ui−1=2)
2J

(Ui+1=2 −Ui−1=2)
��

+
(�vj+1=2 + �vj−1=2)

2J
(Uj+1=2 −Uj−1=2)

��

+
( �wk+1=2 + �wk−1=2)

2J
(Uk+1=2 −Uk−1=2)

��
(11)

where the superscript n + 1
2 is omitted from the terms in the RHS of the equation for

convenience.

2.3. Projection

The �nal step of this projection algorithm decomposes the vector �eld into a divergence-free
component and a gradient of scalar quantity. The projection is de�ned by the divergence
operator D and gradient operator G as in References [20, 7], which satisfy the property:

(DV;  )s = − (V; G )v (12)

where the terms (·; ·)s and (·; ·)v represent the appropriate inner products on the discrete spaces
of scalars and vectors, respectively. This condition guarantees that the numerical projection is
orthogonal. Exact discrete projection utilizes the central di�erence for both D and G operators
and the discrete Laplacian operator derived decouples the grid [21] as shown in Figure 2,
where a two-dimensional grid is decoupled into four distinct subgrids. Almgren et al. [9]
introduced an approximate projection, which kept the same discrete form of the Poisson
equation so that it can take advantage of the fast solvers. However, the resulting divergence-
free component is not really divergence-free even though its divergence is of the order O(h2)
as reported in Almgren et al. [9].
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Figure 2. This �gure shows the four decoupled grids for a two-dimensional grid.

Since the pressure form of projection is adopted in this section, U∗; n+1 is projected to
extract the following linear system:

Lst =D
(
U∗; n+1

�t

)
(13)

where Lst represents the standard di�erence Laplacian operator and the equations used to
compute the new velocity �eld and the gradient of pressure are as follows:

Un+1

�t
=
U∗; n+1

�t
−G 

1
J
T t∇��n+1=2 =G 

2.4. Estimation of pressure �eld

It is important to estimate the pressure �eld from the velocity �eld so that forces induced by
�uid �ow can be estimated. It is noted that as the pressure at half-time step is computed in
the numerical scheme outlined in the previous sections, the pressure at each time level is not
available. Hence a separate procedure is incorporated into the algorithm to obtain the pressure
�eld after computing the velocity �eld. The pressure Poisson equation which is obtained by
taking the divergence on both sides of the momentum equation (2) and also by considering
the satisfaction of the divergence-free property of the velocity �eld as follows:

∇ · (∇�)
�

=−∇ · (U · ∇)U+∇ · F (14)

3. OVERLAPPING GRID

A system of overlapping grids is used to simplify the grid generation task for geometrically
complicated �ow domains. Even though the geometry of the test cases considered in this
work are relatively simple the aim of this work is to demonstrate the implementation of the
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algorithm on overlapping grids and to gain con�dence before applying this method to more
complex geometries. The overlapping grid consists of several component grids, which overlap
each other. Since it is not required to match on the interior boundaries between the component
grids, the grid generation can be more �exible so that the cost for constructing the structured
grid for complex �ow simulation problems can be greatly reduced. However, the overlap
region between the component grids must be large enough so that the �ow information can
be transferred between component grids correctly. Chesshire and Henshaw [11] described a
method for generating such overlapping grids and a procedure for determining interpolation
coe�cients to enable �ow variable transfer and interpolation. The grid generator, Ogen out-
lined in Reference [22], is used to generate the overlapping grids used in this work. The
internal boundary of component grid consists of the interpolation cells whose �ow variable
values are extracted from other component grids with which it overlaps with.
For overlapping grid, each component grid has its own mapping function �. Hence

Equations (1) and (2) can be set up on each component grid and the Godunov-projection
algorithm outlined here can be applied on each component grid provided the values on the
interior boundary are known. Hence, the �ow �elds on the component grids are coupled to
the �ow variables on the interior boundary cells. In this work, a high order interpolation is
used to compute the �ow variables on the interior boundary cells. In this study a third-order
interpolation for the implementation of the approximate projection method is used so as to
maintain the divergence of the projected velocity �eld to second order O(h2). This is shown
in Reference [11] which shows that a third-order interpolation is required in order to retain
the overall second-order accuracy of the Godunov-projection method for the solution of the
incompressible Navier–Stokes equations.
The Godunov-projection method is applied on the overlapping grid by employing the orig-

inal di�erence method on every component grid and using the interpolation equation on the
interior boundary cells. The resulting system of linear equations from all the cells of the
overlapping grid are solved simultaneously using various iterative methods such as the quasi-
minimum residual (QMR) method in the construction of the evolving numerical �ow �eld.
The use of overlapping grids can also reduce the computational cost for computing �ows with
moving boundaries. In the evolution of the �ow �eld, the modi�ed computational grid can be
regenerated cheaply by moving the component grids around the rigid body according to the
motion of the body and recomputing the interpolation relations between the background grids
and the body grids.

4. NUMERICAL RESULTS

The Godunov-projection algorithm as outlined in the previous sections has been implemented
on overlapping grids for some standard benchmark �ow problems in the inertial co-ordinate
system as showcased in Reference [23]. In order to demonstrate the performance of the
Godunov-projection method on the body-�xed co-ordinate system, two benchmark problems
are solved. A moving boundary problem, where a cylinder moves in a tank, is simulated
to show the procedure of using overlapping grids to solve moving boundary problem. This
is followed by the computation of �ow around an oscillating cylinder where the body-�xed
co-ordinate system has been used for the formulation of the problem. The algorithm is also
applied to compute the �ow around a multi-bodied under-water robotic vehicle prototype
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Figure 3. Interpolation scheme.

undergoing an accelerated motion schedule and based on this computation, added mass co-
e�cients that are normally estimated from experimental data for supplementing low-order
hydrodynamic models are estimated approximately.

4.1. Flow around moving body in a tank

One of the prime challenges in simulating a moving boundary problem in �uid �ow con-
cerns with the manner in which the computation is carried out in computational domain
which changes shape with time. One particular model �ow problem resembling the motion
of bodies underwater that has been solved by Ren [5] using a Finite Element Method for
solving the INS is repeated here with the present algorithm to demonstrate the capability of
using overlapping grid to simulate the moving boundary problem. The Godunov-projection
algorithm for solving the INS Equations in a body-�xed co-ordinate system is used to exam-
ine the implications for more realistic three-dimensional hydrodynamic �ow problems. Two
co-ordinate-systems, namely the tank-�xed co-ordinate system and the body-�xed co-ordinate
system exist for consideration in the simulation of this problem. Since the most interesting
area of computational domain is the area around the moving body and the tank has a simple
rectangular geometry, one possible method for simulating the problem is to solve the INS
equations in the body-�xed co-ordinate system so that there is no need for interpolating the
�ow �eld variables on the body grid and hence a more accurate solution can be expected
from the simulation. In order to facilitate this approach two sets of grids are generated and
overlapped, i.e. a body grid is generated around the cylindrical body and is overlapped on
the rectangular tank grid. The motion of body is then represented by moving the tank grid
instead of the grid around the cylinder. When the tank grid is moved, an overlapping grid
is regenerated by establishing the interpolation relationship between the new tank grid and
the body grid. The �ow variables on the body grid can be kept and only the variables on
the new tank grid are obtained to be interpolated from that on the previous overlapping grid.
This results in a reduction of the computational overhead. At a given instant of time, the
computational procedure for solving the moving boundary problem begins with the solution
being advanced using a time step without moving any grid. Next, the tank grid is moved
by the distance traversed during the time step in the body-�xed co-ordinate system. This is
followed by regenerating the interpolation relationship between the new tank grid and the
body grid. Then, the �ow variables on the new tank grid are redistributed by interpolating
from the previous overlapping grid. The computation is advanced to the next time-step. The
interpolation scheme to redistribute the �ow �eld in the tank grid is brie�y outlined here.
As shown in Figure 3, the interpolation is done in the computational space (�; �), where ��
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and �� are both unity and points a; b; c and d are the nodal points forming a cell in which
the point p at which values are to be interpolated lies in. Bilinear interpolation is used to
estimate the interpolated value as follows:

up=(1− d2)[(1− d1)ua + d1ub] + d2[(1− d1)ud + d1uc]

For this simulation, the moving body is a circular cylinder with a diameter d=0:2 m and the
tank is a rectangle 2× 1:2 m. The body moves with u0 = 0:1 m=s and v0 = 0 in the tank-�xed
co-ordinate system. The Reynolds number is set to 175. As the computation is done on the
body-�xed co-ordinate system the tank moves with u�tank =−0:1 m=s. The initial computational
domain and the component grids are shown in the Plate 1(a), which contains two component
grids, one being the uniform grid having 85× 45 cells discretizing the �uid domain in the
rectangular tank and the other being the O-grid around the cylinder having 49× 17 cells and
with grid lines clustered in the vicinity of the cylinder surface. Initially, the velocity �eld is
assumed to be uniform �eld with value of u�tank . This corresponds to a stationary initial �ow
�eld in the tank-�xed co-ordinate system. Plate 1(b) shows the orientation of the overlap-
ping grid after time t=5 has elapsed from the initial state. It can be seen that the tank grid
has changed its position. The computed �ow �eld of the cylinder moving in a tank at the
same instant, t=5, is shown in Plate 2. The computed streamline pattern on the body-�xed
co-ordinate system is shown in Plates 2(a) and 2(b) shows the computed pressure contours at
this instant. From these �gures the formation of vortices in the wake of the cylinder can be
seen although the vortex shedding process has not yet been initiated yet. The vorticity contour
plot shown in Plate 2(c) con�rms this observation. As the computed results agree well with
those reported in Reference [5], the feasibility of this approach involving the implementa-
tion of the Godunov-projection algorithm on overlapped grids for the solution of the INS in
non-inertial co-ordinate systems has been demonstrated.

4.2. Flow around a oscillating circular cylinder

The computation of unsteady �ow past a blu� body has received enormous attention espe-
cially for the prediction of the loads on engineering structures, such as pipelines and o�shore
platform. The wake vortices also interact with the structure and induce oscillating lift and drag
forces whose frequencies are directly related to the vortex shedding frequency. The transverse
oscillation of cylinder with a frequency at or near its natural vortex shedding frequency, which
is de�ned as the frequency of vortex shedding when the �ow past a stationary cylinder, causes
vortex shedding to occur at the frequency of cylinder oscillation and result in an increase in
the mean value of the drag. This phenomenon of �uid-structure interaction is known as ‘lock-
in’ or ‘wake capture’. Similarly, the in-line oscillation of the cylinder with a frequency at
or near twice the natural vortex shedding frequency increases the lift amplitude and induces
the vortex shedding to occur at half the frequency of cylinder oscillation. There are several
experimental and numerical investigations of transverse or in-line oscillating cylinders, such
as References [24–26] and the lock-in zones of frequency at various Reynolds numbers and
amplitude of oscillation have been studied also.
Here the �ow past an oscillating circular cylinder is considered as a benchmark problem

to verify the results predicted by modi�ed Godunov-projection method on overlapping grids.
The circular cylinder is immersed in a uniform �ow and oscillates either in the transverse
(y-axis) or lateral (in-line or x-axis) direction at a frequency close to its natural frequency.
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Figure 4. Con�guration of the �ow past an oscillating cylinder.

The Reynolds number for the �ow is based on the uniform free-stream velocity. The cylinder
is assumed to be stationary initially and is forced to oscillate sinusoidally after the alternating
vortex shedding process has been initiated and established. The con�guration of the compu-
tational domain and the co-ordinate systems are shown in Figure 4. The in�ow boundary is
located 8 diameters ahead the cylinder and the out�ow boundary at 24 diameters aft of the
cylinder. The top and bottom far-�eld boundaries are 8 diameters away from the cylinder. At
the far-�eld boundaries the velocity is speci�ed as the undisturbed free stream velocity. The
oscillation of cylinder is de�ned by the following equations:

In-line oscillation: x(t)=−ax cos[2�fx(t − tp)]

Transverse oscillation: y(t)=−ay cos[2�fy(t − tp)]

where ax and ay are the amplitude of oscillation, fx and fy are the frequencies of oscillation
and tp is the time when the cylinder starts to oscillate. A system of overlapping grids for
this calculation consists of a circular grid and a background rectangular grid. The circular
grid, whose outer diameter is 6 times of cylinder diameter, consists of 56× 32 cells and
the background grid consists of 120× 88 grid cells. The grid cells are clustered around the
cylinder. As the non-inertial reference frame attached the cylinder, xoy, is used, the grid is
�xed during the calculation.
In order to verify the computed results, the test cases computed and reported in Reference

[25] who uses a di�erent approach are simulated. The current algorithm is used to compute the
unsteady �ow around a cylinder which oscillates both in the transverse and lateral directions.
The Reynolds number of the �ow is based at 100 and the Strouhal number corresponding
to the natural vortex shedding frequency is Stn=fnD=U∞=0:164. The cylinder oscillates si-
multaneously in the in-line and transverse directions with frequency parameters fx=2fy=2fn

and the amplitude of the oscillation in the in-line and transverse direction is ax= ay=0:2D
and corresponds to those values used in the studies carried out by Karanth [25]. The contour
plots of computed pressure and vorticity corresponding to a well-developed �ow �eld at an
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(a) pressure (a) vorticity

Figure 5. Pressure and vorticity contour plots of �ow past a cylinder with combined
oscillation, fx=2fy=2fn; ax= ay=0:2D.

(a) relative velocity field

(b) absolute velocity field

Figure 6. Streamlines of relative and absolute velocity �eld of �ow past a cylinder with
the combined oscillation, fx=2fy=2fn; ax= ay=0:2D.

instant of time are shown, respectively, in Figures 5(a) and 5(b). It can be seen that the vortex
shedding arises in the wake of cylinder. The streamlines of relative and absolute velocity �eld
at the same instant of time are shown in Figure 6. The time-variation of the computed lift and
drag coe�cients are shown in Figure 7. The variation of lift with time does not correspond to
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Plate 1. Overlapping grids for �ow around moving body in a tank: (a) t=0; (b) t=5.

Plate 2. Flow �eld of the cylinder moving in a tank at t=5.
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Plate 3. Section grids for the mainbody: (a) section grid for the mainbody;
(b) near-�eld grids around the mainbody.

Plate 4. Instantaneous pressure and streamline plots of the �ow corresponding
to URV accelerating along the lateral axis.
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Figure 7. Time variation of force coe�cients of cylinder with combined
oscillation, fx=2fy=2fn; ax= ay=0:2D.

a sinusoidal variation. From the graph the estimate of the mean drag coe�cient Cd;m is 1.77
and the amplitude of the drag coe�cient is Cd; amp is 1.89. The estimate of the maximum lift
coe�cient Cl;max is 0.978. These quantities are in close agreement with the results reported
in Reference [25].

4.3. Unsteady �ow around an accelerating URV

The algorithm is next extended for the unsteady �ow past a multi-bodied URV prototype
which contains three bodies, namely a main body and two buoyant tubes. An overlapping
grid is generated to discretize the complex computational domain around the multi-bodied
URV, which includes component grids around the three bodies and a background grid. A
hierarchical structure is used so that the component grids of the two buoyant tubes are totally
embedded in the component grids of main body and the background grid only overlaps with
the main body grids, which, in turn, is associated with the tube grids. Hence, the computational
costs for estimating the interpolation relationship can be greatly reduced. Figure 8 shows this
hierarchical structure. For each body by virtue of its symmetry, a cylindrical grid is constructed
by rotating a two-dimensional section grid and two head grids are used to remove the singular
grid points which lie on the axis around which the sectional grids have been rotated. Plate 3
shows the sectional grid and the near-�eld grid system around the main body, which also
show these head grids. Similar grids are also constructed in the domains around the two
buoyant tubes. The background grid is a Cartesian grid, which covers overall extent of the
computational area around the multi-bodied geometric con�guration. The total number of grid
cells used for this three-dimensional �ow problem is about 1:2 million cells. Since the number
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Figure 8. Hierarchical structure of overlapping grid for underwater vehicle.

of grid cells is very large, for computing this �ow economically, the �ow algorithm has been
parallelised to run on a multi-processor computer as outlined in a related paper by Pan and
Damodaran [23].
The estimation of hydrodynamic forces and moments acting on the URV is essential for the

construction of the control system for its navigation and control in underwater operations. In
other words, all hydrodynamic coe�cients have to be determined. The CFD simulation based
on the current algorithm can be used to estimate these coe�cients in situations where there is
no direct access to experimental hydrodynamic simulation facilities. The Godunov-projection
algorithm has been used to solve the �ow past the underwater vehicle and to estimate the
hydrodynamic coe�cients. Low-order hydrodynamic models based on potential �ow theory are
usually supplemented with the so-called ‘added mass’ coe�cients estimated from experimental
data from water-tunnels for extending the range of their validity and realism. In situations
where it is not possible to have access to experimental data, it is possible to extract these
‘added mass’ coe�cients from numerical solutions of the INS equations. It can be assumed
that both vehicle and �uid are still or in some steady-state motion initially and the URV is
set in sudden motion according to some prescribed motion which may be steady motion in
another direction or an unsteady (accelerated) motion or a combination of translational and
rotational motion prescribed, respectively, as a function of time along or about the lateral,
star-board and=or vertical direction. Since the velocity of the vehicle is low and if it is
reasonable to assume that the forces are caused mainly by the acceleration of vehicle, then
the approximation of the ‘added mass’ coe�cients can be computed from the unsteady �ow
�elds simulated by the Godunov-projection algorithm.
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Table I. Added mass coe�cients of the multi-body underwater vehicle.

Hydrodynamic coe�cients on u̇
Xu̇=2:15× 10−2 Yu̇=0 Zu̇=0

Ku̇=0 Mu̇=1:32× 10−3 Nu̇=0

Hydrodynamic coe�cients on v̇
Xv̇=0 Yv̇=5:82× 10−2 Zv̇=1:07× 10−4
Kv̇=−4:70× 10−3 Mv̇=0 Nv̇= − 2:04× 10−2

Hydrodynamic coe�cients on ẇ
Xẇ =0 Yẇ =0 Zẇ =6:84× 10−2
Kẇ =0 Mẇ =2:26× 10−2 Nẇ =0

Plate 4 shows the computed �ow �eld at an instant of time when the URV is made to
accelerate along the direction parallel to the lateral axis. The computed pressure contours
and streamline pattern at selected sectional planes are shown in this �gure. The colors on
the body surfaces and streamlines are calibrated according to the local value of the pressure.
High pressure appears on the upwind side of the vehicle and low pressure on the downwind
side. As the velocity of the vehicle is still low, no vortices have been formed at this instant
of time. From the computed �ow �elds such as these at a particular instant of time, added
mass coe�cients can be estimated for cases when the URV is in accelerated motion along its
longitudinal, lateral and vertical axis. Table I shows the values of these added mass coe�-
cients estimated from the computational �ow �eld. In this table the notations Xu̇ and Yu̇, etc.
are de�ned according to the de�nitions in Reference [2] and refer to the added mass coe�-
cients along the three body co-ordinate directions. In the same manner, other hydrodynamic
coe�cients can also be obtained by performing the �ow simulation at the speci�c instants of
time.

5. CONCLUSION

In this work, a modi�ed Godunov-projection method implemented on a system of overlapping
grids for solving the unsteady incompressible Navier–Stokes equations in the non-inertial
co-ordinate system has been described. This scheme is second-order accurate both in time
and space. The Godunov procedure is incorporated to provide a robust discretization of the
convection term for high Reynolds number �ow. The pressure Poisson equation is solved to
obtain the pressure �eld. The extra source term arising from the formulation in non-inertial co-
ordinate system can be easily incorporated into the numerical scheme. The use of overlapping
grids not only makes grid generation easier, but also reduces the computational cost for solving
the moving boundary problems encountered in the underwater hydrodynamic applications. It
can be concluded based on the benchmark time-dependent �ow problems that the Godunov-
projection algorithm when combined with a system of overlapping grids and implemented on
parallel computers, can serve as a feasible prediction tool for hydrodynamic modelling for
simulating the navigation and control of underwater vehicles. In the future the algorithm can
be coupled with a six-degree-of freedom dynamics model to couple the �uid dynamics and
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kinematics together to explore coupled �eld problems in which the evolving trajectories of
the URVs can be predicted for a freely moving or a controlled URV interacting freely with
hydrodynamic environment.
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